Let θ be the parameter of a probability distribution. Suppose that we want to test H_0 : $\theta = \theta_0$.

For example, maybe we want to test H_0 : p = 0.5 in the binomial setting.

If the MLE estimator of θ is $\hat{\theta}_{MLE}$, then when the sample size is large, the test statistic

$$Z = \frac{\hat{\theta}_{\rm MLE} - E(\hat{\theta}_{\rm MLE})}{\sqrt{\rm Var}(\hat{\theta}_{\rm MLE})},$$

where $\sqrt{\operatorname{Var}(\hat{\theta}_{\mathrm{MLE}})}$ is the standard error of the estimator, has an approximate standard normal distribution. This is equivalent to saying Z^2 has an approximate χ^2 distribution with 1 df.

In the binomial setting,

- $\theta = p$
- $\hat{\theta}_{\text{MLE}} = \hat{p} = \frac{x}{n}$ $E(\hat{p}) = p$
- $\operatorname{Var}(\hat{p}) = \frac{p(1-p)}{n}$

The problem is that the true value of p is unknown.

(1) If the null value is true we can use the null value of p in the standard error:

$$SE = \sqrt{Var(\hat{p})} = \frac{p_0(1-p_0)}{n}$$

This is the quantity we have traditionally used in the denominator of the Z-test statistic. This is called a *Score* Test.

Definition A Score Statistic is one that uses the expression for the standard error evaluated at the null value of the unknown parameter.

Example For the binomial, the test statistic would look like

$$Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

The Z-test using this test statistic, or the corresponding chi-square test that uses Z^2 is called a *score test*.

This is the standard statistic for a hypothesis test.

(2) However, for a confidence interval, we instead use

$$SE = \sqrt{Var(\hat{p})} = \frac{\hat{p}(1-\hat{p})}{n},$$

which is the estimated value of the standard error. It uses the value of the MLE in the expression of the standard error. This is called a Wald Test.

Definition A Wald Statistic is one that uses the expression for the standard error evaluated at the MLE for the unknown parameter.

Example For the binomial, the test statistic would look like

$$Z = \frac{\hat{p} - p_0}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}}.$$

The hypothesis test using this statistic, or the corresponding chi-square test that uses Z^2 is called a Wald Test.

Note: If you take this test statistic and solve for the value of p_0 , you get the standard formula for a confidence interval for a proportion.